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Holographic formulation of quantum supergravity
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We show thatN51 supergravity with a cosmological constant can be expressed as constrained topological
field theory based on the supergroupOsp(1u4). The theory is then extended to include timelike boundaries
with finite spatial area. Consistent boundary conditions are found which induce a boundary theory based on a
supersymmetric Chern-Simons theory. The boundary state space is constructed from states of the boundary
supersymmetric Chern-Simons theory on the punctured two sphere and naturally satisfies the Bekenstein
bound, where area is measured by the area operator of quantum supergravity.
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I. INTRODUCTION

In this paper we describe a formulation of quantum sup
gravity with a finite cosmological constant in the presence
a timelike boundary with finite spatial area. We show that,
in the case of quantum general relativity@1,2#, a holographic
formulation of the theory naturally emerges. This work
part of a series of papers@3–5# in which we are extending to
quantum supergravity the methods@6–10# which have been
developed successfully to formulate quantum general r
tivity.1

The particular interest in this paper is the form of t
boundary theory, which turns out to be built from the sta
of a supersymmetric Chern-Simons theory based on the
peralgebraOsp(1u2)% Osp(1u2). We believe that, when
extended to theN58 case, these results will be significa
for the understanding of the AdS conformal field theo
~CFT! conjecture in 311 dimensions. The extension of ou
results to theN52 case may also make possible detai
comparisons of the string theory and loop quantum gra
description of boundaries and horizons@1#. These questions
will be the subject of further papers in this series.

Along the way, the key idea that we exploit is that sup
gravity, as well as general relativity@1#, can be understood a
a constrained topological quantum field theory. Th
emerged already in several papers@13,14#. This fact is re-
sponsible for the characteristic form of the boundary theo
as made up of conformal blocks coming from representati
of topological field theory.

For the case in which spacetime has a time like bound
with finite area, the holographic principle can be stated
follows @1,2,15–18#.

~1! The Hilbert spaceHB for all states of a quantum grav
ity theory on the interior of a spacial manifoldM must be

*Email address: ling@phys.psu.edu
†Email address: smolin@phys.psu.edu
1Earlier papers in this direction include@11–14#.
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decomposable in terms of eigenspaces of an observabÂ
that measures the area of the boundaryB5]M. Thus,

HB5(
a

Ha , ~1!

wherea are the eigenvalues of the area operatorÂ. We write
the decomposition as a sum becauseÂ is has been shown to
have a discrete spectra, assuming only that it may be re
lated in a way that results in an operator that is finite a
diffeomorphism invariant@6#.

~2! The physical state spacesHa must have finite dimen-
sion bounded by

dim~HA!<ea/4G\. ~2!

~3! A complete measurement of a state inHB must be
possible using only elements of an observable algebraAB
associated with measurements that can be made on
boundaryB. The areaÂ must be one of these observables

This is a powerful clue, because quantum field theor
with finite dimensional Hilbert spaces are not common~even
the harmonic oscillator has an infinite dimensional Hilb
space.! The only large class of such theories are topologi
quantum field theories~TQFTs!. A natural strategy for for-
mulating holographic quantum theories of gravity is then
look for quantum field theories ind11 dimensions that in-
duce TQFTs on theird dimensional boundaries. One adva
tage of such a formulation is that it is already in a langua
which is background independent and non-perturbative.

As shown in@1,2#, quantum general relativity is exactl
this kind of theory, as it can be understood to arise from
topological field theory by the imposition of certain co
straints. We have also found this to be true of 11 dimensio
supergravity, at least at the classical level@28#. The main
goal of this paper is to extend that analysis to quantum
pergravity.

In all these cases there is a set of exact physical quan
states in the bulk, associated with the boundary sta
©2001 The American Physical Society10-1
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@19,20#. In addition to being exact descriptions of the Plan
scale structure these states also have semiclassical inte
tations in terms of fluctuations around anti–de Sitter or
Sitter spacetimes@19,21#.

That such results are possible at all may seem very m
terious, given that these theories are perturbatively n
renormalizable. They are possible because these are no
any non-renormalizable theories; they have special st
tures, which are in fact closely related to topological fie
theories. In fact, general relativity and supergravity~at least
for N51,2) can be formulated asconstrained topological
field theories. This means that the derivative and bounda
terms in the action are the same as in a related topolog
quantum field theory. The local degrees of freedom are
troduced by a set of local constraints that do not involve
derivatives of the gravitational fields, and so do not alter
commutation relations of the quantum theory. It is this s
cial structure that makes possible the holographic formu
tion of these theories, as well as a long list of other no
perturbative results, in both the canonical@22# and path-
integral @23,24# frameworks.

A holographic formulation has been constructed for
quantum general relativity. In fact, it has been known
some time that general relativity in 311 dimensions with a
non-vanishing cosmological constant can be formulated
such a way that it induces a (211)-dimensional TQFT on its
finite boundary. This theory has exactly the form just d
scribed, where the finite dimensional Hilbert spaces on
finite boundaries of a given area are built from the conform
blocks of anSU(2)q , Wess-Zumino-Witten~WZW! confor-
mal field theories on punctured spheres@1#. The area of the
boundary is given by the sum of the total spins of the pu
tures, and the levelk is related to the cosmological consta
by k56p/G2L @1,25#. This new formulation is treated in
@1#. The basic framework developed there is based on a
resentation of general relativity as a constrained topolog
field theory~TFT!. The starting point is a TFT for an algebr
G, taken to beSp(4). This theory has no local degrees
freedom, but induces degrees of freedom on finite bounda
which arise from a (211)-dimensional Chern-Simon
theory on the boundary. The local degrees of freedom
introduced by imposing constraints, which break the ga
symmetry to a subgroupH5SU(2)L % SU(2)R . The result
is that the physical degrees of freedom live in the cosetG/H.
The degrees of freedom on the boundary are also restricte
those of a Chern-Simons theory forH, but with curvatures
constrained by the degrees of freedom in the coset, wh
turn out to parameterize the induced metric in the bound
Further, the generators of the gauge transformations for
cosetG/H do not disappear; they instead emerge as the g
erators of four dimensional diffeomorphisms. Extended
the boundary theory, they define the Hamiltonian of t
theory.

In this paper we extend this construction to theN51
chiral supergravity. We organize the paper as follows.
Sec. II we rewrite theN51 chiral supergravity@11# in the
formulation ofOsp(1u4) constrained superBF theory. Then
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in the following section we give the canonical formalism
the theory. The boundary formulation of the model whi
has finite boundary is described in Sec. IV. In Sec. V we g
the quantum mechanical description of the theory, and sh
that the space of boundary states can be constructed from
state space of anOsp(1u2)% Osp(1u2) Chern-Simons
theory. We show that as in quantum general relativity,
Bekenstein bound is naturally satisfied@1#. We conclude the
paper with a discussion of future directions.

II. SUPERGRAVITY AS A CONSTRAINED TOPOLOGICAL
FIELD THEORY

N51 supergravity can be written in a chiral formulatio
in terms of the pure spin connection@11#. Here we will show
it can be written down directly as a constrainedB`F theory
by extending the algebra of the connection fromSp(4) to
Osp(1u4,R). This is similar to the way that supergravity wa
established as a constrainedBF theory by Sano and co
workers@13# and Ezawa@14#.

The Osp(1u4) superalgebra is a graded extension of
Sp(4) Lie algebra. It is generated by bosonic generat
JAB , JA8B8 , and JAA8 which span thesp(4) algebra and
fermionic generatorsQA andQA8 , where (A,A8) is a pair of
SU(2) indices corresponding toSU(2)% SU(2),Sp(4).
The superalgebra is

@JAB ,JCD#5d (A
(CJB)

D) , @JA8B8 ,JC8D8#5d (A8
(C8JB8)

D8) ,

@JAA8 ,JBB8#5eABJA8B81eA8B8JAB ,

$QA ,QB%5
GAL

2
JAB ,

$QA8 ,QB8%5
GAL

2
JA8B8 , $QA ,QA8%5

GAL

2
JAA8 ,

~3!

@JAB ,QC#5eC(AQB) , @JA8B8 ,QC8#5eC8(A8QB8) ,

@JAA8 ,QB#5eABQA8 , @JAA8 ,QB8#5eA8B8QA ,

@JAB ,QC8#50, @JA8B8 ,QC#50,

whereG is the bare gravitational constant and theL is cos-
mology constant.

The supertrace Str may be defined acting on the gen
tors. The non-vanishing terms are

Str$JABJCD%ªd (A
(CdB)

D) , Str$JA8B8J
C8D8%ªd (A8

(C8dB8)
D8) ,

Str$JAA8J
BB8%ªdA

BdA8
B8 ,

Str$QAQB%ª
1

m
eAB , Str$QA8QB8%ª

1

m
eA8B8 . ~4!
0-2
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The configuration variables of the theories we will study h
are the components of the connection one form
Osp(1u4):

A5AABJAB1AA8B8JA8B81
1

l
eAA8JAA81cAQA1xA8QA8 ,

~5!

where l is a constant with the dimension of length. We s
that it includes the vierbein one-formeAA8 and gravitino and
anti-gravitino one formscA andxA8.

The curvature two-formF is

F:5dA1@A,A#

5FABJAB1FA8B8J
A8B81FAA8J

AA81FAQA1FA8Q
A8.

~6!

The components of the curvature are

FAB5 f AB1
1

l 2
eAA8`eB

A81
GAL

2l
cA`cB , ~7!

FA5dcA1AA
B`cB2

1

l
eAA8`xA8

5DcA2
1

l
eAA8`xA8

[ f A2
1

l
eAA8`xA8, ~8!

FA8B85 f A8B81
1

l 2
eA8A`eB8

A
1

GAL

2l
xA8`xB8 ,

~9!

FA85dxA81AA8
B8`xB82

1

l
eA8A`cA

5D̄xA82
1

l
eA8A`cA

[ f A82
1

l
eA8A`cA, ~10!
e
f

e

FAA85deAA81AA
B`eBA81AA8

B8`eAB8

1
GAL

2l
cA`xA8 . ~11!

To construct the action we will need a Lie algebra valu
two-form B, whose components are labeled:

BªBABJAB1BA8B8J
A8B81BAA8J

AA81mBAQA1mBA8Q
A8.

~12!

We can now write the action for theOsp(1u4) BF
theory:

2 iI52 i E
M

StrH 1

g2
B`F2

e2

2
B`BJ . ~13!

Hereg,e are dimensionless constants. Note thatm appearing
in Eqs.~4! and ~12! is another dimensionless constant.

The super-BF theory is a topological quantum fiel
theory in that it has no local degrees of freedom We n
follow the method introduced in@2# and construct the action
for supergravity by constraining the fields of the topologic
super-BF theory. To do this we break some of the gau
invariance by imposing local, non-derivative constraints. T
supergravity action is

2 iI init ial 52 iI SBF2 iI Constraint, ~14!

where

I Constraint5E
M

lABS 1

l 2
eAA8`eB

A82BABD
1lAS 1

l
eAA8`xA82BAD . ~15!

In components this action is
2 iI init ial 5E
M

1

g2 S BAB`FAB1
1

l
BA`FAD2

e2

2 S BAB`BAB1
m

l
BA`BAD1

1

g2 S BA8B8`FA8B81
1

l
BA8`FA8D

2
e2

2 S BA8B8`BA8B81
m

l
BA8`BA8D1

1

g2 S BAA8`FAA82
e2

2
BAA8`BAA8D1lABS 1

l 2
eAA8`eB

A82BABD
1lAS 1

l
eAA8`xA82BAD1lA8B8S 1

l 2
eAA8`eB8

A2BA8B8D 1lA8S 1

l
eAA8`cA2BA8D . ~16!

064010-3
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Note that the field equation forBAA8 yields

FAA85BAA8 . ~17!

ThusBAA8 carries the information as to the torsion, so th

BAA85¹eAA81
GAL

2l
cA`xA8 . ~18!

The other field equations will eventually setBAA8 to zero;
hence this part of the action is redundant and can be drop
This simplifies the resulting canonical analysis, but does
affect the field equations. Once this is done the action sp
into left and right handed pieces

2 iI SG52 iI L
SG12 iI R

SG, ~19!

where

2 iI L
SG5E

M

1

g2 S BAB`FAB1
1

l
BA`FAD

2
e2

2 S BAB`BAB1
m2

l
BA`BAD

1lABS 1

l 2
eAA8`eB

A82BABD
1lAS 1

l
eAA8`xA82BAD . ~20!

The right handed piece is formally the conjugate of the
handed piece that results from switching primed a
unprimed indices. We will see shortly how the reality con
tions arise, whose effect will be to require that they are co
plex conjugates of each other.

To see that Eq.~20! is an action forN51 supergravity we
proceed to solve the constraint forBAB andBA :

BAB5
1

l 2
eAA8`eB

A8, ~21!

BA5
1

l
eAA8`xA8. ~22!

Substituting the solutions to Eq.~20!, we find the action
taking the form
06401
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2 iIL5E
M

1

g2l 2
~eAA8`eB

A8` f AB1eAA8`xA8`DcA!

2
1

l 4 S 1

g2
2

e2

2 D ~eAA8`eB
A8`eAB8`eB

B8!

1
AL

2l
~eAA8`eB

A8`cA`cB!2
1

l S e2m

2l 2
1

1

g2l 2D
3~eAA8`xA8`eA

B8`xB8!. ~23!

If we define the dimensionless constants as

Gªg2l 2, Lª

6

l 4 S 1

g2
2

e2

2 D , mª

GAL26

3g2e2
, ~24!

then

2 iIL5E
M

1

G
~eAA8`eB

A8` f AB1eAA8`xA8`DcA!

2
L

6
~eAA8`eB

A8`eAB8`eB8
B

!

1
AL

2l
~eAA8`eB

A8`cA`cB!

2
AL

6l
~eAA8`xA8`eA

B8`xB8!. ~25!

This is the same action as the Capovilla-Dell-Jacob
~CDJ! formalism@26# after we solve the constraint equation
associated to the Lagrangian multipliersfABCD and kABC
@11#. We may note that the cosmological constant is zero
e2g252, at which pointm521.

III. CANONICAL FORMALISM OF NÄ1 SCBF THEORY

We now study the canonical formalism forN51 super-
gravity based on the fields just introduced. Our main goa
to understand those issues which arise in the supergra
case. These mainly have to do with how the anticommuta
relations between the left and right handed supersymm
constraints arise and how they come to close on the sp
diffeomorphism and Hamiltonian constraints.

In this section we ignore the possibility of bounda
terms. Many of the expressions will later be modified by t
presence of boundary terms.

A. 3¿1 decomposition of the action

In the last section we see thatN51 supergravity can be
written as a constrained topological field theory based on
supergroupOsp(1u4). The total action can be expressed
terms of the component fields
0-4
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2 iI52 i E
M

dx4H 1

g2 S BAB`FAB1
1

l
BA`FAD2

e2

2 S BAB`BAB1
m2

l
BA`BAD1lABS 1

l 2
eAA8`eB

A82BABD
1lAS 1

l
eAA8`xA82BAD2

1

g2 S BA8B8`FA8B81
1

l
BA8`FA8D1

e2

2 S BA8B8`BA8B81
m2

l
BA8`BA8D

2lA8B8S 1

l 2
eA8A`eB8

A2BA8B8D 2lA8S 1

l
eA8A`cA2BA8D J . ~26!

We proceed with the 311 decomposition of the action. We assume the spacetime has hyperbolic structure and
topology ofR3S. We then express the action in terms of space and time independently:

2 iI52 i E dtE
S
dx3eabcH 1

g2 S Bab
ABȦcAB1

1

l
Bab

AċcA2Bab
A8B8ȦcA8B82

1

l
Bab

A8ẋcA8D1
1

g2
A0

ABS DaBbcAB1
1

l
BbcAcaBD

2
1

g2
A0

A8B8S D̄aBbcA8B81
1

l
BbcA8xaB8D1

1

l
c0

AS 1

g2
~DaBbcA1GALBbcABca

B!1lA8
abecA8A2

1

g2l
Bab

A8ecA8AD
2

1

l
x0

A8S 1

g2
~D̄aBbcA81GALBbcA8B8xa

B8!1lA
abecAA82

1

g2l
Bab

A ecAA8D 1eAA80S 2

g2l 2
Bab

ABecB
A81

2

l 2
lab

ABecB
A8

1
1

l
lab

A xc
A82

1

g2l 2
Bab

A xc
A82

2

g2l 2
Bab

A8B8ecB8
A

2
2

l 2
lab

A8B8ecB8
A2

1

l
lab

A8cc
A1

1

g2l 2
Bab

A8cc
AD 1B0a

ABS 1

g2
f bcAB1

1

g2l 2
ebA

A8ecBA8

1
1

g2

GAL

2l
cbAccB2e2BbcAB2lbcABD 2B0a

A8B8S 1

g2
f bcA8B81

1

g2l 2
ebA8

AecB8A1
1

g2

GAL

2l
xbA8xcB82e2BbcA8B8

2lbcA8B8D 1
1

l
B0a

A S 1

g2
f bcA2

1

g2l
ebAA8xc

A82e2m2BbcA2 llbcAD 2
1

l
B0a

A8S 1

g2
f bcA82

1

g2l
BbA8Acc

A2e2m2BbcA8

2 llbcA8D 1l0a
ABS 1

l 2
ebA

A8ecBA82BbcABD 2l0a
A8B8S 1

l 2
ebA8

A ecB8A2BbcA8B8D 1l0a
A S 1

l
ebA

A8xcA82BbcAD
2l0a

A8S 1

l
ebA8

A ccA2BbcA8D J . ~27!

Here 0 is the time-like index anda,b,c(51,2,3) are space-like indices. From Eq.~27!, we define the non-vanishing momen
for the formsAAB ,AA8B8 ,cA ,xA8 as2

pAB
a
ª

2 i

g2
eabcBbcAB, pA8B8

a
ª

i

g2
eabcBbcA8B8 , ~28!

pA
a
ª

2 i

g2
eabcBbcA , pA8

a
ª

i

g2
eabcBbcA8 . ~29!

The other momenta for the formsB, l, ande0A8B8 vanish. We then rewrite the action as

2These will receive corrections when we introduce the boundary terms.
064010-5
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2 iI5E dtE
S
dx3H S pAB

a Ȧa
AB1

1

l
pA

a ċa
A1pA8B8

a Ȧa
A8B81

1

l
pA8

a ẋa
A8D1A0

ABS DapAB
a 1

1

l
pA

acaBD1A0
A8B8S D̄apA8B8

a

1
1

l
pA8

a xaB8D1
1

l
c0

AS ~DapA
a1GALpAB

a ca
B!2 i eabclA8

abecA8A1
1

l
paA8eaA8AD2

1

l
x0

A8S ~D̄apA8
a

1GALpA8B8
a xa

B8!

1 i eabclA
abecAA81

1

l
paAeaAA8D1eAA80S 2

l 2
paABeaB

A82
1

l 2
paAxa

A82
2i

l 2
eabclab

ABecB
A82

i

l
eabclab

A xc
A81

2

l 2
paA8B8eaB8

A

2
1

l 2
paA8ca

A1
2i

l 2
eabclab

A8B8ecB8
A

1
i

l
eabclab

A8cc
AD 2 iB0a

ABS 1

g2
eabcf bcAB1

1

g2l 2
eabcebA

A8ecBA81
1

g2

GAL

2l
eabccAbcBc

2 ie2g2pAB
a 2eabclbcABD 1 iB0a

A8B8S 1

g2
eabcf bcA8B81

1

g2l 2
eabcebA8

A ecB8A1
1

g2

GAL

2l
eabcxA8bxB8c1 ie2g2pA8B8a

2eabclbcA8B8D 2
i

l
B0a

A S 1

g2
eabcf bcA2

1

g2l
eabcebAA8xc

A82 ie2g2m2pA
a2 l eabclbcAD 1

i

l
B0a

A8S 1

g2
eabcf bcA8

2
1

g2l
eabcebA8Acc

A1 ie2g2m2pA8
a

2 l eabclbcA8D 2 il0a
ABS 1

l 2
eabcebA

A8ecBA82 ig2pAB
a D 1 il0a

A8B8S 1

l 2
eabcebA8

A ecB8A

1 ig2pA8B8
a D 2 il0a

A S 1

l
eabcebA

A8xcA82 ig2pA
a D1 il0a

A8S 1

l
eabcebA8

A ccA1 ig2pA8
a D J . ~30!
it
s

o-

o

n

int
n

a
reas
l to

es.
B. Primary constraints

We first consider those constraints associated w
Lagrange multipliersl0. The solutions to these equation
will help to simplify the other constraints. To break the t
pological gauge symmetry of theBF theory, and in the pro-
cess introduce the local degrees of freedom, additional c
straints have been introduced in Eq.~27!. Their canonical
form can be read off of Eq.~30!, yielding

JAB
a
ª

1

l 2
eabcebA

A8ecBA82 ig2pAB
a 50, ~31!

JA8B8
a

ª

1

l 2
eabcebA8

A ecB8A1 ig2pA8B8
a

50,

~32!

JA
a
ª

1

l
eabcebA

A8xcA82 ig2pA
a50, ~33!

JA8
a
ª

1

l
eabcebA8

A ccA1 ig2pA8
a

50. ~34!

These equations set thepaA8B8,paAB,paA andpaA8 to be the
duals of the two forms constructed by the frame fields a
the spinor fields.

We first discuss the solution to the bosonic constra
~31! and~32!. These are the same as in general relativity a
06401
h

n-

d

s
d

we refer the reader to@2# for more discussion of the follow-
ing points. We introduce the quantitiesNAA8 which is de-
fined as

NAA85tmemAA8 , ~35!

where tm is the timelike unit normal satisfyingtmtm521.

Then we can expressea
AA8 , in terms ofNB

A8 and eitherpaAB

or paA8B8:

ea
AA85

1

Ah
eabcp

bBCpC
cANB

A8 , ~36!

ea
A8A5

1

Ah
eabcp

bB8C8pC8
cA8NB8

A , ~37!

whereh is the determinant of the spatial metrichab .
Notice that there is a secondary constraint, which is

Ra
AA85

1

Ah
eabcp

bBCpC
cANB

A82
1

Ah
eabcp

bB8C8pC8
cA8NB8

A .

~38!

This expresses the reality conditions. We will later use
consequence of this, which expresses the idea that the a
of surfaces defined from the left handed fields are equa
the areas defined from the right handed fields@2#.

We now come to the treatment of the fermion variabl
There is a difficulty which arises from Eqs.~33! and ~34!.
0-6
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These tell us that the Poisson antibrackets$cA ,xA8% are non-
zero. Hence the configuration space cannot contain both
mionic fieldscA andxA8 and we cannot construct a quantu
theory in terms of simultaneous eigenstates ofcA andxA8 .
This is a well-known problem in fermionic theories; there a
two ways of handling it.

C. Treatment of the fermionic constraints: Method 1

We break left-right symmetry immediately and choos
arbitrarily, to diagonalize one of the fermion fields, saycA ,
while treating the other,xA8 , as a momentum field. Thi
means that we will choose a representation such that

ĉAuG&5cAuG&, ~39!

in which the action ofxA8 will be

x̂A8uG&5eAA8
d

dcA
uG&. ~40!

Here for convenience we would like to choose the conjug

pairs (Aa
AB ,pAB

a ), (Aa
A8B8 ,pA8B8

a ), and (ca
A ,pA

a) for the
phase space, and the Poisson brackets are

$paAB~x!,AbCD~y!%5db
ad (C

A dD)
B d3~x,y!,

$paA8B8~x!,AbC8D8~y!%5db
ad (C8

A8 dD8)
B8 d3~x,y!,

~41!

$paA~x!,cbB~y!%52db
adB

Ad3~x,y!,

with the rest being zero. We need to solve for the ot

variablesea
AA8 ,paA8,xa

A8 in terms of the canonical moment
from Eqs.~36!–~43!. To do this we solve the remaining pr
mary constraints~33! and ~34! to find,

xc
A85

1

Ah

1

l
eabcp

aABpA
bNB

A8 , ~42!

pA8
a

5
i

g2l
eabcebA8

A ccA . ~43!

Proceeding from here we quickly reach the form of c
nonical supergravity discussed already by Jacobson in@11#.

D. Treatment of the fermionic constraints: Method 2

The second method is to keep left-right symmetry at
cost of keeping in the theory both sets of fermionic variabl
along with the constraints that imply their redundancy. T
will be convenient for the study of the boundary theory
well as the quantization.

To do this we find the secondary constraints which
analogous to Eq.~38! which impose the relations betwee
the left and right fermionic variables. Taking linear comb
nations of Eqs.~33! and ~34! we find that
06401
r-

,

te

r

-

e
,

s
s

e

ca
AJA

a
ª

1

l
eabcca

AebA
A8xcA82 ig2ca

ApA
a50, ~44!

xa
A8JA8

a
ª

1

l
eabcxa

A8ebA8
A ccA1 ig2xa

A8pA8
a

50.

~45!

By adding and subtracting we get an equivalent set of c
straints

R5ca
ApA

a2xa
A8pA8

a
50, ~46!

S05eabcxa
A8ebA8

A ccA50. ~47!

Eliminating ebA8
A we have

S5xa
A8NA8

B pBC
[a pb]CAcbA50. ~48!

E. Elimination of the lagrange multipliers l

We will want to eliminate thelAB and lA8B8 from the
canonical theory. This can be done by solving the constra
that follow from the vanishing of the canonical momenta f
BAB ,BA8B8 ,BA ,BA8 . These are

I AB
a
ª

1

g2
eabcf bcAB1

1

g2l 2
eabcebA

A8ecBA8

1
1

g2

GAL

2l
eabccAbcBc2 ie2g2pAB

a 2eabclbcAB50,

~49!

I A8B8
a

ª

1

g2
eabcf bcA8B81

1

g2l 2
eabcebA8

A ecB8A1
1

g2

GAL

2l

3eabcxA8bxB8c1 ie2g2pA8B8
a

2eabclbcA8B850,

~50!

I A
a
ª

1

g2
eabcf bcA2

1

g2l
eabcebAA8xc

A82 ie2g2m2pA
a

2 l eabclbcA50, ~51!

I A8
a
ª

1

g2
eabcf bcA82

1

g2l
eabcebA8Acc

A1 ie2g2m2pA8
a

2 l eabclbcA850. ~52!

These are second class constraints and can be solve
eliminatelbcAB, lbcA8B8 , lbcA , andlbcA8 in terms of the
other variables:

eabclbcAB5
1

g2
eabcf bcAB1 ipAB

a 1
1

g2

GAL

2l
eabccbAccB

2 ie2g2pAB
a , ~53!
0-7
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eabclbcA8B85
1

g2
eabcf bcA8B82 ipA8B8

a

1
1

g2

GAL

2l
eabcxA8bxB8c1 ie2g2pA8B8

a ,

~54!

l eabclbcA5
1

g2
eabcf bcA2 ipA

a2 ie2g2m2pA
a , ~55!

l eabclbcA85
1

g2
eabcf bcA81 ipA8

a
1 ie2g2m2pA8

a . ~56!

F. Gauss and supersymmetry constraints

Now we come to the constraints that impose t
Osp(1u2)L ^ Osp(1u2)R local gauge symmetry. These are

GABªDapAB
a 1

1

l
pA

acaB50, ~57!

GA
L
ªDapA

a1GALpAB
a ca

B1
1

l
paA8eaA8A

2 i eabclA8
abecA8A

5DapA
a1GALpAB

a ca
B

1S 2 i

g2l
eabcf bc

A81
GAL

3l
paA8D eaA8A50, ~58!

GA8B8ªD̄apA8B8
a

1
1

l
pA8

a xaB850, ~59!

GA8
R
ªD̄apA8

a
1GALpA8B8

a xa
B81

1

l
paAeaAA8

1 i eabclA
abecAA85D̄apA8

a
1GALpA8B8

a xa
B8

1S i

g2l
eabcf bc

A 1
GAL

3l
paAD eaAA850, ~60!

where Eqs.~55!, ~56! are used to cancel the multiplierslab
A

andlab
A8 out of Eqs.~58! and ~60!. HereGAB andGA8B8 are

nothing but the ordinarySU(2)L % SU(2)R Gauss law con-
straints, andGA

L ,GA8
R are the left-handed and right-hande

supersymmetry constraints respectively, which are differ
from those ofchiral supergravity due to the appearance
eAA8 , which mix the left-handed supersymmetry constrai
(LA) and right-handed ones (RA8) in chiral supergravities
together in the form

GA
L5LA1R̄A , GA8

R
5L̄A81RA8 , ~61!

where
06401
nt
f
s

LA :5DapA
a2GALpAB

a ca
B , ~62!

RA8 :5S 2 i

g2l
eabcf bc

A 1
GAL

3l
paAD eaAA8 , ~63!

andRA8 seems not to be conjugate ofLA .3 However, using
Eqs.~36!–~43! and~18!, we can change the form ofR̄A8 and
find

R̄A5S 2 i

g2l
eabcf bc

A81
GAL

3l
paA8D eaA8A

5DapA
a1

GAL

3
pAB

a ca
B

5LA2
2GAL

3
pAB

a ca
B ,

L̄A85D̄apA8
a

1GALpA8B8
a ca

B8

5S i

g2l
eabcf bc

A 1GALpaAD eaAA8

5RA81
2GAL

3l
paAeaAA8 . ~64!

To show this, we only need consider the key term and fin
can be changed into the following expression:

2 i

g2l
eabcf bc

A8eaA8A5
2 i

g2l
eabc@dbxc

A81Ab
A8B8xcB8#eaA8A

5
2 i

g2l
eabc@dbxc

A8eaA8A#

1
2 i

g2l
eabcxc

A8~dbeaA8A1AbA8
B8 eaB8A!

5DbpA
b2AbA

B pB
b1

2 i

g2l
eabcxc

A8D̄beaA8A

5DbpA
b2AbA

B pB
b1

2 i

g2l
eabcxc

A8

3S 2AbA
B eaA8B2

GAL

2l
xbA8caAD

5DbpA
b2

iAL

2
eabcxc

A8xbA8caA

5DbpA
b . ~65!

Combining these equations together we find

3This is the characteristic of chiral supergravity; see@11#.
0-8



ls

fo

on
m
e

ri-

w

nd

a

nt

d
n-

eral

he

to

nd
ed

of
are
im-
dary
is

HOLOGRAPHIC FORMULATION OF QUANTUM SUPERGRAVITY PHYSICAL REVIEW D63 064010
GA
L52S DapA

a1
2GAL

3
pAB

a ca
BD 50, ~66!

GA8
R

52S i

g2l
eabcf bc

A 1
2GAL

3l
paAD eaAA850.

~67!

They are conjugate of each other indeed. We may a
note that if we write

GA8
R

5
NA8

A

Ah
GA

R , ~68!

we have

GA
R52S i

g2l
f bc

B 1
2GAL

3l
paBeabcD pBD

b pcDA. ~69!

If we consider the Poisson brackets between theGAB and
GA

L , we find that they does form a close algebra
Osp(1u2) as in the case of chiral supergravity:

$G~l!,G~l8!%5G~@l,l8# !, ~70!

$GL~h!,G~l!%5GL~@h,l#!, ~71!

$GL~h!,GL~h8!%5G~@h,h8# !, ~72!

whereG and GL are the constrained functional smeared
the three dimensional space. The same is true for the co
nation of theGA8B8 andGA8 . So all these equations form th
super Gauss’s law which generates theOsp(1u2)L
% Osp(1u2)R gauge transformations of the canonical va
ables.

In this sense we can say our model is combining t
copies of the chiral supergravities into one.

We still have to discuss the commutator ofGA with GA8.
This requires more work as it involves the Hamiltonian a
diffeomorphism constraints.

G. Hamiltonian and diffeomorphism constraints

We come finally to the constraint associated with the L
grangian multipliere0AA8 . As in @2# these will contain the
Hamiltonian and diffeomorphism constraints. We have

GAA8:5
2

l 2
paABeaB

A82
1

l 2
paAxa

A82
2i

l 2
eabclab

ABecB
A8

2
i

l
eabclab

A xc
A81

2

l 2
paA8B8eaB8

A
2

1

l 2
paA8ca

A

1
2i

l 2
eabclab

A8B8ecB8
A

1
i

l
eabclab

A8cc
A50. ~73!

To understand this constraint better, we try to change it i
a new form in whichGAA8 is divided into two conjugate
parts (CAB ,CA8B8):
06401
o

r

bi-

o

-

o

GAA85
2

G S CAB
NB

A8

Ah
1CA8B8

NB8
A

Ah
D . ~74!

To find the forms ofCAB andCA8B8 we need only to plug all
the solutions~36!–~43! and~53!–~56! into ~73!; then we find
CAB andCA8B8 to have the following form:

CAB5
G2L

3
eabcp

aACpbBDpCD
c 22ipaBCpDC

b f ab
AD

2 i
GAL

l
paBCpDC

b ca
Acb

D

1
GAL

3
g2eabcp

aApbBCpC
c 22ipaBCpC

b f ab
A ,

~75!

CA8B85
G2L

3
eabcp

aA8C8pbB8D8pC8D8
c

12ipaB8C8pD8C8
b f ab

A8D8

1 i
GAL

l
paB8C8pD8C8

b xa
A8xb

D8

1
GAL

3
g2eabcp

aA8pbB8C8pC8
c

12ipaB8C8pC8
b f ab

A8 . ~76!

As is the case in general relativity@2#, it turns out that the
four constraintsCAB contain both the diffeomorphism an
Hamiltonian constraints of the supergravity. If we only co
sider the terms only involving the variablespAB

a andFabAB,
then the constraints go back to those of the quantum gen
relativity @2#.

IV. BOUNDARY THEORY

We are now ready to focus on the construction of t
boundary theory. We follow the formulation given in@2# for
general relativity with Lorentzian signature. This is related
the Euclidean formulation given in@1#, but differs from that
in several significant aspects.

We study first the addition of a boundary to the action a
equations of motion. Once this is understood we will proce
to their expression in the Hamiltonian formulation.

A. Boundary terms in the action and equations of motion

In the presence of the boundary, the ordinary variations
the action are not well defined unless boundary terms
added to the action and some boundary conditions are
posed. These must be chosen so as to cancel the boun
term in the variation of the action, so that the total action
functionally differentiable. We will assume thatM has the
topology ofR3S, so that]M'R3]S, where]S is a com-
0-9
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pact two manifold. We will assume here that]S'S2, but it
is not difficult to consider the more general case.

It’s very interesting that the total action~20! can be
supplemented by theOsp(1u2)L % Osp(1u2)R super Chern-
Simons term with the appropriate boundary condition

Scs5
ik

4pE]M
Ycs~AAB ,cA!2

ik

4pE]M
Ycs~AA8B8 ,xA8!

5
ik

4pE]M
S AAB`F̃AB1

2

3
A`A`A1

GAL

2l
cA`F̃AD

2
ik

4pE]M
S AA8B8`F̃A8B81

2

3
A8`A8`A8

1
GAL

2l
xA8`F̃A8D , ~77!

where (F̃AB ,F̃A) and (F̃A8B8 ,F̃A8) are components of the
curvature of the one-form connection ofOsp(1u2)L and
Osp(1u2)R respectively. They are of the form

F̃AB5 f AB1
GAL

2l
cA`cB ,

F̃A5DcA5 f A ,
~78!

F̃A8B85 f A8B81
GAL

2l
xA8`xB8 ,

F̃A85D̄xA85 f A8 .

If we take the variation of the total action

dStot5dSBF1dSCS

5E
M

~••• !1E
]M

dAAB`S 1

g2
BAB2

k

2p
F̃ABD

1dcA`S 1

g2
BA2

k

2p

GAL

2
~ F̃A1AAB`cB!D

2E
]M

dAA8B8`S 1

g2
BA8B82

k

2p
F̃A8B8D

1dxA8`S 1

g2
BA82

k

2p

GAL

2
~ F̃A81AA8B8`xB8!D ,

~79!

we require that the boundary terms vanish. In order to ind
a local boundary theory, we require that the integrand of
boundary term in the variation vanish. This leads to the f
lowing conditions:

eabcdAc
ABS 1

g2
BabAB2

k

2p
F̃abABD 50, ~80!
06401
e
e

l-

eabcdcc
AS 1

g2
BabA2

k

2p

GAL

2
~ F̃abA1AaAB`cb

B!D 50,

~81!

eabcdAc
A8B8S 1

g2
BabA8B82

k

2p
F̃abA8B8D 50, ~82!

eabcdxa
A8S 1

g2
BabA82

k

2p

GAL

2
~ F̃abA81AaA8B8`xb

B8!D 50.

~83!

There are several ways to satisfy these conditions. Taking
boundary term involvingdAAB as an example, we find th
following:

~i! One can fix the variableAa on the boundary:

dAa
ABu]M50. ~84!

~ii ! One can take the self-dual conditions for the curvat
F̃abAB:

S F̃abAB2
2p

g2k
BabABD

]M
50. ~85!

~iii ! We can consider some combination of these two c
ditions in which Eq.~84! is imposed on some components
the connection while Eq.~85! is imposed on the others.

The first case is simple, but leads to a reduction of
local gauge invariance on the boundary. The next simp
case would be the second~85!. This is what was done for the
Euclidean theory in@1#. An advantage of this condition is
that it leads to no reduction of the local gauge symmetry
the boundary. However, in the Lorentzian case, Eq.~85! is
too strong, as it can be shown that all of its solutions cor
spond to a surface wiggling in a fixed AdS space-time.
counting there is one degree of freedom, but this turns ou
correspond to local longitudinal motions of the surface.

This problem does not arise in the Euclidean case stud
in @1# because the left and right handed components of
connection are independent. It is a consequence of the
that in the Lorentzian theory they are instead related by
reality conditions, which require that they are complex co
jugates of each other.

If our boundary conditions are to allow an infinite dime
sional space of solutions we must then loosen the self-d
boundary conditions. We do this as follows.

We begin by imposing a time slicing of the boundar
which corresponds to some choice of time coordinatet on
]M. We then restrict attention to a spatial slice of t
boundary at fixedt5const. We proceed by specifying a s
of preferred points on the spatial boundary, which will
called punctures. They will correspond to points where
spin network states meet the boundary in the quan
theory. Each puncture is surrounded by a region of the s
tial boundary. In each region we introduce local coordina
0-10
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(r ,u) which are angular coordinates with the puncture at
origin. These can then be joined, yielding a single coordin
patch on the whole punctured sphere, which reduces to
angular coordinate system in the neighborhood of each p
ture. Bringing backt we then have a coordinate syste
(r ,u,t) on the whole of]M minus the world lines of the
punctures.

Then we put the following conditions for the componen
of the fields

1

g2
BruAB2

k

2p
F̃ruAB50, ~86!

1

g2
ButAB2

k

2p
F̃utAB50, ~87!

dAu50. ~88!

The first two equations~86! and~87! correspond to imposing
the self-dual boundary conditions on the componentsFru and
Ftu . But instead of constraining theFrt component we im-
pose the third condition~88!. The radial component of the
connection,Ar , is thus unrestricted and is free to evolv
with time.

It can be checked that when these conditions have b
imposed the bulk theory is not trivial and has an infin
number of solutions.

We can then write the boundary conditions in terms of
component fields, yielding,

f ruAB5
1

l 2

2p

g2k
erAA8`euB

A82
GAL

2l
c rA`cuB , ~89!

f ruA5
1

l

2p

g2k
erAA8`xu

A8 , ~90!

f tuAB5
1

l 2

2p

g2k
etAA8`euB

A82
GAL

2l
c tA`cuB ,

~91!

f tuA5
1

l

2p

g2k
etAA8`xu

A8 , ~92!

dAuAB50, dcuA50. ~93!

Consistency with the field equations leads to a relations
between the constantk and the cosmological constant,

G2L5
6p

k
. ~94!

B. Boundary terms in the canonical theory

Next we describe the expression of the boundary te
and conditions on the canonical theory. The first effect
06401
e
te
an
c-

en

e

ip

s
o

take into account is that the boundary terms alter the de
tion of the momenta of the fields, due to the fact that Eq.~77!
contains time derivatives,

pAB
a
ª

2 i

g2
eabcBbcAB~x!1

ik

4pE d2S~s!eabAb
ABd3

„x,S~s!…,

~95!

pA8B8
a

ª

i

g2
eabcBbcA8B8~x!

1
2 ik

4p E d2S~s!eabAb
A8B8d3

„x,S~s!…, ~96!

pA
a
ª

2 i

g2
eabcBbcA~x!

1
ik

4pE d2S~s!eab
GAL

2l
cb

Ad3
„x,S~s!…, ~97!

pA8
a
ª

i

g2
eabcBbcA8~x!

1
2 ik

4p E d2S~s!eab
GAL

2l
xb

A8d3
„x,S~s!…, ~98!

whereeab is the area element induced by the volume elem
on the surface with

eab
ªeabcnc . ~99!

The Gaussian constraints can be expressed as

GAB5DapaAB1qAB, ~100!

where

paAB
ª

2 i

g2
eabcBbc

AB~x!1
ik

2pE d2S~s!eabAb
ABd3

„x,S~s!…,

~101!

and

qAB
ª

i

g2l
eabcBab

A cc
B

1
ik

2pE d2S~s!eab
GAL

2l
ca

Acb
Bd3

„x,d~s!….

~102!

The Gauss functional can be obtained by smearing the c
straint on the spatial manifold with the appropriate bound
terms:
0-11
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G~LAB!5E
S
LABGAB5E

S
LABFDaS 2 i

g2
eabcBbc

ABD 2
2 i

g2l
eabcBab

A cc
BG2

ik

2pES
LABE d2S~s!eabDaAb

ABd3
„x,S~s!…

1
ik

2pES
LABE d2S~s!eab

GAL

2l
ca

Acb
Bd3

„x,S~s!…52E
S

i

g2
eabcBbc

ABDaLAB2E
S
LAB

2 i

g2l
eabcBab

A ca
B

1E
]S

dsLABS 2 i

g2
eabcBbc

ABna1
ik

2p
eabf ab

AB1
ik

2p

GAL

2l
eabca

Acb
BD . ~103!

In the canonical theory the constraint then has a boundary term

G~LAB!ub5E
]S

dsLABF2 i

g2
eabcBbc

ABnc1
ik

2p
eabS f ab

AB1
GAL

2l
ca

Acb
BD G . ~104!

This leads to the canonical form of the boundary terms:

1

g2
BabAB5

k

2p
F̃abAB. ~105!

Notice that this corresponds with one of the components of the boundary terms we imposed in the Lagrangian the~86!.
The boundary conditions~87! do not arise in the same way, as they involve the time components of fields, which be
Lagrange multipliers in the canonical theory. The last components of the Lagrangian theory~88! persist in the Hamiltonian
theory. These in fact correspond to the fact that in the quantum theory the labels of the punctures are fixed and do n
in time.

In a similar way, the boundary term on the supersymmetric constraints can be derived as follows:

GA5DapaA1qA ~106!

where

paA
ª

2 i

g2
eabcBbc

A ~x!1
ik

2pE d2S~s!eab
GAL

2l
cb

Ad3
„x,S~s!…, ~107!

qA
ª

i

g2l

2GAL

3l
eabcBab

ABccB1
ik

2pE d2S~s!eab
GAL

2l
Aa

ABcbBd3
„x,S~s!…, ~108!

and the supersymmetric functional is

G~LA!5E
S
LAGA5E

S
LAFDaS 2 i

g2
eabcBbc

A D 2
2 i

g2l

2GAL

3l
eabcBab

ABccBG2
ik

2p

GAL

2l E
S
LAE d2S~s!eabDacb

Ad3
„x,S~s!…

1
ik

2pES
LAE d2S~s!eab

GAL

2l
Ab

ABcaBd3
„x,S~s!…52E

S

2 i

g2
eabcBbc

A DaLA2E
S
LA

2 i

g2l

2GAL

3l
eabcBab

ABccB

1E
]S

dsLAS 2 i

g2
eabcBbc

A na2
ik

2p

GAL

2l
eab~ f ab

A 1Aa
ABcbB!D . ~109!

Comparing Eq.~109! with Eq. ~81!, we have

1

g2
BabA5

k

2p

GAL

2
~ F̃abA1AaAB`cb

B!. ~110!

From above consideration, we find both the Gauss constraint and the supersymmetric constraint well defined on th
surface if we impose the self-dual conditions for the curvatures.
064010-12
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V. QUANTIZATION OF THE THEORY

We are finally ready to discuss the quantization of sup
gravity, in the presence of boundary conditions~86!–~88!.
We follow the methods of loop quantum gravity@6–10#, ex-
tended to theories with finite boundaries in@1,2#. Two im-
portant parts of the theory are the spin network basis@6,7#,
which we extended to supergravity in@3#, and the Chern-
Simons state@19,21#, which was extended to supergravity
@13#. The combination yields framed or quantum-deform
supersymmetric spin networks, which are constructed fr
the representation theory of quantum deformedOsp(1u2)
@27#.

The method of treating the relationship between
boundary and bulk theory we use was developed in@1# and
then extended to theories with Lorentzian signature in@2#.
Here we describe only the results; the reader is referred to@1#
and @2# for detail.

There is a well-known non-perturbative procedure to d
with the quantization of the bulk theory in the case of gene
relativity @6–10#. A set of complete but independent basis
the quantum states can be constructed by means of spin
works. It is a trivalent graphG in which each node join som
links. Associated every link, there is a spinj i which satisfies
some conditions at the node, which is also labeled by
intertwinerne . Recently we extended these techniques to
N51 chiral supergravity with super Lie algebraOsp(1u2)
@3#. It turns out that an analogous supersymmetric spin n
works can be established for the theory. In particular in
basis of super spin networks the spectrum of the area op
tor can be computed out and partly diagonalized. For
valent spin networks its eigenvalues have a discrete f
given by @3#

ÂuGsg,ni ,ve&5(
i

l p
2Aj i S j i1

1

2D uGsg,ni ,ve&,

~111!

wherel p is the Planck length andj i5ni /2. We need modify
the construction slightly to fit the constrained superBF
theory, which double covers over the chiral supergrav
The configuration space of the theory is the modular spac
Osp(1u2)% Osp(1u2). The basis for the Hilbert space ca
be constructed in terms of the super spin networks for
super algebraOsp(1u2)L % Osp(1u2)R . Then the links of
the networks are labeled by conjugate pairs of spins (j L , j R)
and the nodes are labeled by pairs of intertwiners (nL ,nR).
There is a similar case as in quantum general relativity
we need impose the balanced conditions to the pairs
( j L , j R) and (nL ,nR) to coincide with the reality condition o
the theory. These conditions arej L5 j R andnL5nR .

All the construction above can be extended without di
culty to the quantum deformed version of the superalge
Uq„Osp(1u2)…, whose representation are finite dimension
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and bounded by the genericq.4 Theq-deformed formalism of
the supergroup give some modification to the spectrum of
area but having a similar expression as the ordinary one

ÂuGsg,ni ,ve&5(
i

l p
2A@ j i #F j i1

1

2G uGsg,ni ,ve&,

~112!

where

@ j #ª
qj2q2 j

q2q21
. ~113!

If we impose all the constraints on the state space qu
tum mechanically and require the results of their action v
ish, we could find a set of physical states which actually
the super Chern-Simons states:

C~G!5E DA expS ik

4p
@Ycs~AAB ,cA!2Ycs~AA8B8 ,xA8!# D .

~114!

It allows us to testify the Bekenstein bound in a quantu
mechanical sense. We consider the spatialn-punctured
boundary with finite area. Associated to every punctu
there is a half-integerj a which takes values from 1/2 tok/2,
wherek is the coupling constant of the Chern-Simons theo
Then the total Hilbert space is constructed by the direct s
of the state spaces of allOsp(1u2)% Osp(1u2) Chern-
Simons theories. Here we pay more attention to the con
bution of the boundaries. As we know, for every set of t
punctures the Hilbert space of the topological field theo
has finite number of degrees of freedom. In our case i
contributed by the conformal blocks for then punctures of
the Osp(1u2)% Osp(1u2) WZW model. We find

Hj 1 , . . . ,j n
5Vj 1 , . . . ,j n

L
% Vj 1 , . . . ,j n

R , ~115!

and the dimensions of the space is

dim~Vj 1 , . . . ,j n

L
% Vj 1 , . . . ,j n

R !5)
i

~4 j i11!. ~116!

Then, based on this result and the holography hypothe
we can construct the total physical state space as the s
mation of all the possible states of the topological field the
ries:

H phys5(
n

(
j 1 , . . . ,j n

Hj 1 , . . . ,j n
. ~117!

Using Eqs.~111! and~116!, and choosing the constantc, we
find that the Bekenstein bound is satisfied:

4The quantum superalgebra and supergroupsUq„osp(1u2)… are
investigated in several places@27# and its structure of finite dimen
sional representation is well established.
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dim~Vj 1 , . . . ,j n

L
% Vj 1 , . . . ,j n

R !<expH cA@ j 1 , . . . ,j n#

G\ J .

~118!

VI. CONCLUSIONS

In this paper we have extended to the case ofN51 su-
pergravity the basic facts about finite area boundary co
tions worked out previously for quantum general relativity
@1,2#. Here we have treated the case of timelike bounda
following @2#; it is straightforward also to find the same r
sults for the Euclidean theory with cosmological constant
restricting to the left handed sector and then Euclideaniz
as in@1#. A natural extension of the Chern-Simons bounda
conditions studied in@1# to null boundaries, suitable for th
descriptions of horizons, has been worked out in@29#, fol-
lowing observations made in@30#. Following the results
given here it should be straightforward also to extend th
results to supergravity. Another important thing yet to
done is the construction of quasi-local operators on
boundary which represent the Hamiltonian and supersym
try charges. It may be hoped that this may resolve iss
concerning the positivity of the Hamiltonian in loop quantu
gravity @31#.

The next works in this series will extend these results
N52 supergravity, which should make possible the deta
se

in

r-

e
-
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description of Bogonol’nyi-Prasad-Sommerfield~BPS! states
and BPS black holes in the language of loop quantum gr
ity. This should make possible the direct comparison of
results on black hole state counting coming from stri
theory and loop quantum gravity. Another application
these results may be to an explicit construction of the bou
ary conformal field theory in the AdS/CFT conjecture in
11 dimensions.

As a final remark we emphasize the natural way in wh
the Bekenstein bound is satisfied in quantum general rela
ity given only the imposition of the appropriate Cher
Simons boundary conditions@1#. We see here that this ex
tends naturally to supergravity. This appears to ma
possible formulations of the holographic principle at t
background independent level@32–35#.
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