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Holographic formulation of quantum supergravity
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We show that\'=1 supergravity with a cosmological constant can be expressed as constrained topological
field theory based on the supergro®sp(1]4). The theory is then extended to include timelike boundaries
with finite spatial area. Consistent boundary conditions are found which induce a boundary theory based on a
supersymmetric Chern-Simons theory. The boundary state space is constructed from states of the boundary
supersymmetric Chern-Simons theory on the punctured two sphere and naturally satisfies the Bekenstein
bound, where area is measured by the area operator of quantum supergravity.
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I INTRODUCTION decomposable in terms of eigenspaces of an obsenable

that measures the area of the boundéryd M. Thus,
In this paper we describe a formulation of quantum super-

gravity with a finite cosmological constant in the presence of

a timelike boundary with finite spatial area. We show that, as Hp= Ea: Ha, @)
in the case of quantum general relatiViy;2], a holographic
formulation of the theory naturally emerges. This work is
part of a series of papef8—5] in which we are extending to
guantum supergravity the methof-10] which have been
developed successfully to formulate quantum general rel
tivity.*

The particular interest in this paper is the form of the
boundary theory, which turns out to be built from the states;;
of a supersymmetric Chern-Simons theory based on the su-
peralgebraOsp(1|2)®Osp(1]|2). We believe that, when dim(H ) <e?/4Ch. )
extended to the\V'=8 case, these results will be significant

for the understanding of the AdS conformal field theory (3) A complete measurement of a state7; must be
(CFT) conjecture in 3-1 dimensions. The extension of our possible using only elements of an observable algebsa
results to theN=2 case may also make possible detailedassociated with measurements that can be made on the

comparisons of the string theory and loop quantum gravity,, ,nqary5 The areah must be one of these observables.
description of boundaries and horizoild. These questions rpis is 3 powerful clue, because quantum field theories

will be the subject of furthgr papers in this SEres. with finite dimensional Hilbert spaces are not comnteven
AI.ong the way, the key |dea.that we exploit is that SUPEthe harmonic oscillator has an infinite dimensional Hilbert
gravity, as well as general relativili], can be understood as g, .q The only large class of such theories are topological
a_constrained to_pologlcal quantum fmld_ theor_y. Th'squantum field theorie§TQFTS. A natural strategy for for-
emerged already in several papgtS,14. This fact is re- . 1ating holographic quantum theories of gravity is then to
sponsible for the characteristic form of the boundary theorylook for quantum field theories id+ 1 dimensions that in-

as made up of ponformal blocks coming from representationauce TQFTs on theid dimensional boundaries. One advan-
of topological field theory. tage of such a formulation is that it is already in a language

. For_ t_he case in which space_time _ha_s a time like bounda%hich is background independent and non-perturbative.
with finite area, the holographic principle can be stated as As shown in[1,2], quantum general relativity is exactly

follows [1’2'.15_18' this kind of theory, as it can be understood to arise from a

. (1) The Hilbert Spacé{ for all states ofa}quantum 9rav= topological field theory by the imposition of certain con-

ity theory on the interior of a spacial manifoltt must be  qaints We have also found this to be true of 11 dimensional
supergravity, at least at the classical le{28]. The main
goal of this paper is to extend that analysis to quantum su-

wherea are the eigenvalues of the area operétoWe write

the decomposition as a sum becadsis has been shown to
have a discrete spectra, assuming only that it may be regu-
aIated in a way that results in an operator that is finite and
diffeomorphism invarianf6].

(2) The physical state spacés, must have finite dimen-

n bounded by
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. e In all these cases there is a set of exact physical quantum
Earlier papers in this direction includé1—14. states in the bulk, associated with the boundary states
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[19,20. In addition to being exact descriptions of the Planckin the following section we give the canonical formalism of

scale structure these states also have semiclassical interptbe theory. The boundary formulation of the model which

tations in terms of fluctuations around anti—de Sitter or dehas finite boundary is described in Sec. IV. In Sec. V we give

Sitter spacetimef19,21). the quantum mechanical description of the theory, and show
That such results are possible at all may seem very myghat the space of boundary states can be constructed from the

terious, given that these theories are perturbatively nonstate space of arOsp(1[2)®Osp(1[2) Chern-Simons

renormalizable. They are possible because these are not jU§€ory.- We show that as in quantum general relativity, the

any non-renormalizable theories; they have special strucdekenstein bound is naturally satisfigh]. We conclude the

tures, which are in fact closely related to topological fieldPaPer with a discussion of future directions.

theories. In fact, general relativity and supergrayiy least

for N=1,2) can be formulated asonstrained topological

field theories This means that the derivative and boundary!l. SUPERGRAVITY AS A CONSTRAINED TOPOLOGICAL

terms in the action are the same as in a related topological FIELD THEORY

quantum field theory. The local d_egrees of freed_om are in- N=1 supergravity can be written in a chiral formulation

troo_luce_:d by a set of Io_cal_ const_ramts that do not involve thg, terms of the pure spin connectiphl]. Here we will show

derivatives of the gravitational fields, and so do not alter the; can be written down directly as a constrair@d.F theory

commutation relations of the quantum theory. It is this speqy extending the algebra of the connection fr@p(4) to

cial structure that makes possible the holographic formulagsp(1|4,R). This is similar to the way that supergravity was

tion of these theories, as well as a long list of other nonestablished as a constrain®&F theory by Sano and co-

perturbative results, in both the canoni¢@2] and path-  workers[13] and Ezawd 14].

integral[23,24] frameworks. The Osp(1|4) superalgebra is a graded extension of the
A holographic formulation has been constructed for theSp(4) Lie algebra. It is generated by bosonic generators

quantum general relativity. In fact, it has been known forJ,g, Jarg:, and Jaar Which span thesp(4) algebra and

some time that general relativity in131l dimensions with a fermionic generatorQ, andQ,., where @,A") is a pair of

non-vanishing cosmological constant can be formulated irSU(2) indices corresponding t&U(2)®SU(2)CSp(4).

such a way that it induces a §21)-dimensional TQFT onits The superalgebra is

finite boundary. This theory has exactly the form just de-

scribed, where the finite dimensional Hilbert spaces on the [JAB,JCD]zgggjg)), [Jarg ,JC'D’]zagg,'Jg,')),

finite boundaries of a given area are built from the conformal

blocks of anSU(2),, Wess-Zumino-WittetWZW) confor-

[J r,J r]:€ J rgrt+ €nr /J y
mal field theories on punctured spheté$ The area of the AR ABTATET T PATBITAB

boundary is given by the sum of the total spins of the punc- GVA

tures, and the level is related to the cosmological constant {QA.Qg}=—FIas.

by k=67/G2A [1,25]. This new formulation is treated in 2

[1]. The basic framework developed there is based on a rep-

resentation of general relativity as a constrained topological GVA GVA

. . S 1Qa,Qp/}= Jass {Qa:Qart=—F"Jdana,
field theory(TFT). The starting point is a TFT for an algebra 2 2

G, taken to beSp(4). This theory has no local degrees of (3)
freedom, but induces degrees of freedom on finite boundaries

which arise from a (2 1)-dimensional Chern-Simons [Jag,Qcl=€cnQp), [Jare,Qcr]=€c/(aQsy,

theory on the boundary. The local degrees of freedom are
introduced by imposing constraints, which break the gauge [Jaa,Qsl=€asQa'» [Jaa Qs ]=€a5/Qn,

symmetry to a subgroupl=SU(2), @ SU(2)r. The result

is that the physical degrees of freedom live in the c&éd. [Jag,Qc'1=0, [Jag,Qc]=0,

The degrees of freedom on the boundary are also restricted to

those of a Chern-Simons theory fbr, but with curvatures whereG is the bare gravitational constant and thes cos-
constrained by the degrees of freedom in the coset, whicfology constant.

turn out to parameterize the induced metric in the boundary. The supertrace Str may be defined acting on the genera-
Further, the generators of the gauge transformations for thtors. The non-vanishing terms are

cosetG/H do not disappear; they instead emerge as the gen- L .

erators of four dimensional diffeomorphisms. Extended to  St{Jagl®P}:=5{568), StAIagJI° }:=5§§,5g,)),

the boundary theory, they define the Hamiltonian of the
theory.

In this paper we extend this construction to tNe=1
chiral supergravity. We organize the paper as follows. In
Sec. Il we rewrite theN=1 chiral supergravity11] in the
formulation ofOsp(1|4) constrained sup&F theory. Then

St Ian JB8 1= 6855,

1 1
St{QaQs} ‘:; €ag:  St{Qa Qp/} ‘:; EAIB' - (4)
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HOLOGRAPHIC FORMULATION OF QUANTUM SUPERGRAVITY

The configuration variables of the theories we will study here
are the components of the connection one form of

Osp(1]4):

’ ’ 1 ’ !
A=ABY g+ AN B I g+ TeAA Jaa +¥*Qa+ X" Qar,
5)

PHYSICAL REVIEW D63 064010
FAA’ = deAAr + AR/\eBAI + Ai,/\eAB,

GVA

To construct the action we will need a Lie algebra valued

wherel is a constant with the dimension of length. We seetwo-form 3, whose components are labeled:

that it includes the vierbein one-foref*" and gravitino and

anti-gravitino one forms/* and XA'.
The curvature two-forni¥ is

F=dA+[A,A]
= FABJAB+ FAIBIJA/B/ + FAAIJAA, + FAQA+ FA/QA/ .
(6)

The components of the curvature are

GVA

1 ’
Fag=fast |_zeAA’/\eBA +T¢A/\¢B, (7)

B 1 A
Fa= d¢A+AA/\¢B_TeAA’/\X
1 N
=Dia— TeAA’/\X
1 A
EfA_I_eAA’/\X y (8)

GVA
A
FA/B/:fA/B/+ |_2eA/A/\eB,+ TXA'/\XB/ y

©)

, 1
FAr:dXAr+AA/B /\XB!_ I_eArA/\lﬁA

B:= BABJAB+ BA/B/\]A’B’ + BAA/JAA’ + ILLBAQA"‘ ,LLBA/QA, .
(12)

We can now write the action for th©sp(1|4) BF
theory:

_ _ 1 e?
—|I=—|f Str —ZB/\]-'——B/\B . (13
M g 2

Hereg,e are dimensionless constants. Note thadppearing
in Egs.(4) and(12) is another dimensionless constant.

The supeBF theory is a topological quantum field
theory in that it has no local degrees of freedom We now
follow the method introduced if2] and construct the action
for supergravity by constraining the fields of the topological
superBF theory. To do this we break some of the gauge
invariance by imposing local, non-derivative constraints. The
supergravity action is

_iIinitiaI: _iISBF_iIConstraint, (14)

where

) 1 ,
I Constraint_ foAB( |—26AA'/\eBA _ BAB

_ 1 1
=DXA’_|_eA'A/\¢A +)\A l_eAAr/\XA _BA . (15)
=f ! A\ 10
AT Teaa v 10, components this action is
. 1 1 e? 1 e 1 )
—iI'm“a'zf —Z(BAB/\FAB—i— I—BA/\FA)—§<BAB/\BAB+IﬁBA/\BA +—| Barg//\FAB +|—BA,/\FA>
Mg g
e? rar M , 1 , e? , 1 )
_E BA!B!/\BA B +I_BA’/\BA +? BAAr/\FAA _EBAA /\BAA’ +)\AB I_ZeAAr/\eBA _BAB
Al A a1 " A Al
+)\ I—eAAI/\X _BA +)\ l—zeAAr/\eB _BA’B’ +)\ l—eAA//\lﬁA—BAr . (16)
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Note that the field equation f@**" yields 1 , ,
_IILIJ ﬁ(eAA'/\eBA /\fAB+ eAA//\XA /\DW)
M(

FAA’:BAA’ . (17) 1 1 R e .
e A (eAAr/\eB /\e /\e B/)

ThusBa,: carries the information as to the torsion, so that

A , 1le’n 1
+ £(eAA,/\eBA NN YB) — — —l:+ E)
G\/K 2l I\ 7] |
, = y+— /\ ’ ! '
Baa =Vean + 5 ¥a\xa (18) X(ean Ay Aele AyE). (23

) If we define the dimensionless constants as
The other field equations will eventually sBf** to zero;

hence this part of the action is redundant and can be dropped. 6/1 &2 GJVA—6
This simplifies the resulting canonical analysis, but does not G:=g?2, A::—(—— _) =—— (24
affect the field equations. Once this is done the action splits 14\ g2 2 3g2e?
into left and right handed pieces
then
—i75C=—i72%+—-i73°, (19 1 , ,
_|I|_: fM a(eAAr/\eBA /\fAB+eAA7/\XA /\DlﬁA)
where A
- E(GAA;/\GBA,/\GABI/\GS,)
1 1
 SG_ AB A A ,
_IIL _JM;(BAB/\F +I_BA/\F ) +2_\/|_(eAA’/\eBA /\lﬁ/\lﬁB)
—e—2 B /\BAB+M—28 A\BA VA A" A oA B’
2 AB I A _ﬁ(eAAr/\X /\e B’/\X ) (25)
+)\AB ieAA//\eBA, —Bag This is the same action as the Capovilla-Dell-Jacobson
12 (CDJ formalism[26] after we solve the constraint equations

1 associated to the Lagrangian multipliedggcp and kagc
A Zern AA —B ) o0 [11]. We may note that the cosmological constant is zero if
( | oANTX A 20 e?g®=2, at which pointu=—1.

The right handed piece is formally the conjugate of the left
handed piece that results from switching primed and
unprimed indices. We will see shortly how the reality condi-  We now study the canonical formalism for=1 super-

tions arise, whose effect will be to require that they are comgravity based on the fields just introduced. Our main goal is

IIl. CANONICAL FORMALISM OF N=1 SCBF THEORY

plex conjugates of eqch othe(. _ to understand those issues which arise in the supergravity
To see that Eq.20) is an ac_tlon foN=1 supergravity we case. These mainly have to do with how the anticommutation
proceed to solve the constraint Brg andB,: relations between the left and right handed supersymmetry

constraints arise and how they come to close on the spatial
diffeomorphism and Hamiltonian constraints.
N In this section we ignore the possibility of boundary
BAB=|—2eAAr/\eB , 21 terms. Many of the expressions will later be modified by the
presence of boundary terms.

1 '
BAZI_eAA’/\XA . (22 A. 3+1 decomposition of the action

In the last section we see thdt=1 supergravity can be
written as a constrained topological field theory based on the
Substituting the solutions to Eq20), we find the action supergroupOsp(1|4). The total action can be expressed in
taking the form terms of the component fields
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2 MZ

1 1 e 1 ,
_|I:_|j dX4‘_2<BAB/\FAB+ TBA/\FA>_E(BAB/\BAB+ TBA/\BA)+)\AB I_ZeAA//\eBA _BAB)
M g

2 2
€ IRt '
+§ BA/BV/\BA B +M|_BA//\BA )

1 ’ l m’ 1 ’
+)\A I_eAA//\XA _BA> - ?(BA/B/AFA B + I_BA’/\FA

rp! 1 ’ ’ 1
—\A'B (I—ZeA,A/\eBA— BA,B,> —\A (I—eA,A/\w—BA,)}. (26)

We proceed with the 31 decomposition of the action. We assume the spacetime has hyperbolic structure and has the
topology of RX Y. We then express the action in terms of space and time independently:

. 1 . ! - 1 ’ -
—iZ= _|J dtf dX3 abcl ( abABAcAB+ TBabA‘ﬂcA_ BabA B AcA’B’_ |_BabA XcA’

1 AB 1
+?AO DaBbcAB+|_BbcA¢aB

1 AVBV _—
- _ZAO DaBpeasr + TBbcA’XaB'

1 1 , 1 ,
+ Tl//oA §(Da5bcA+G\/XBbcAB¢aB)+)\A ab€cA’ AT angecA’A>

1

2 2
A’ AB
7 Xo +eAA’0( gzlzBabecB +|_27\abec3

P , 1
A _Z(DaBbcA’+G\/KBbcA’B’X§ )+ N ap€can — EBQbeCAA/

1 1 2 2 1
A _A' A _A' A'B' A A'B A’ A’ AB
T [ NabXc — g2I2 — -5 BabXc — g2|2 Bab €epr ™~ |2 S\ab ecB’ - T)\ablr/lc + 92I2 abl//c) +Boa

iG\/— 1 GJA

(1
7 2 Yontes— € Bpoap— AbcAB) Boa” (g fbcA’B’+92|2ebA’ ecB’A+gz o Xba'Xce' € *Bpcars’

A/
— focast _92I 2 CoaCeBA’

1

1
A2 02 A’ A_ 2,2
CpanXc —EH BbcA_”\bcA) - TBOa — fpear— ol Boarathc — €1 Bpear

A + 1BA ( ! f !
bcA'B’ | Oa g2 bcA 92|

1,
T €baXear Bpca

1
A’B’ A A
—Nopa (I_ZebA'ecB’A_ Bpcars' | T Aopa

1,
I_zebAecBA’ —Bpcas

AB
_I)\bCA’) +)\Oa

—AA’(le Yoa—B )] (27)
I bA’ YcA™ PpcaAr .

Here 0 is the time-like index anal,b,c(=1,2,3) are space-like indices. From Eg7), we define the non-vanishing momenta
for the formsAag,Aargr »¥a XA &

(28)

—i [
a,_ abgj a . _ abc
Tp= > € BbCA! 7TA’ -—&6 BbCA’ . (29)

The other momenta for the forni, \, andey g vanish. We then rewrite the action as

>These will receive corrections when we introduce the boundary terms.
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. 1 . VTR | - 1
—iZ= f dthdxs[ ( WiBAQB-i- I—witﬂ'g‘-l— Wi,B,AQ By I—ﬂ'i,)(g\ ) +A'8\B( D.mag+ I—'n'iiﬁaB

a
+ |_7TA'XaB’

aABA' _

i ~abcy A 1 aA 2
+le A abeCAA/+I_7T eaAA/ +eAA/O |_27T eaB

1

12 2

1 1
P a2n2, A abc ‘pA'B’ abc
—le g Tag— € kbcAB) +IBOa (?E beArBr+gzlz€ ebA,ecBrA+_

I_ 1 abc,

abc A abc A’
—€ )\bcA'B'> T Bm(Ef foca— o € 8pan Xe

2i i
_ — _aA’ JA abcy A'B’ A _ _abcy A’ JA| _inAB
T l//a+ € )\ab eCB,+ | € %abl/jc |Boa

PHYSICAL REVIEW D 63 064010

A'B' |~ _a
+Ay (Da’ITA,B,

1 1

1 . ’ ’ ’ —_— ’
+ I—l/loA( (Da7T2+G\/K7TiBI/IE)_|€abC)\A abeCA/A+—7TaA eaA/A) - I_XOA ((DaWZ/"‘G\/KWZ/B/XE )

1 , 2i ,od ;2
aA, A abcy ABLA abcy A A aA'B’ JA
27T Xa _|_26 )\abecB_r6 NabXc +|_27T €ap’

|
GVA

ifabc]c +i abceA’e += abc
> beABT 55 € Epalea T 5 € Yapte
g g°l g

abc A 1 G\/X

abc in2n2
2 2 € XArbXBrC+|e g margra
g

i o1
A abc
|_BOa< S PN,

—iezgzﬂzwz—leabc)\bm) + =

l 1 r ’ ’ 1
abc, Al in242,,2._2 abc +\ AB abc A - iy A'B abc,A
- 7 € %paatfc Tiegumy, — 1€ Ny | —ihgy I_Ze €haCeea 197 mag | T1A0, I_ZE €har€cB/A
i~n2, 2 iy A 1 abc A’ in2, A iy A 1 abc A in2,. 8
+i9°ma g | —1NGa 7€ axca —19°m4 +iNgy T€ €p Yeatigomy, | (- (30

B. Primary constraints

we refer the reader t®2] for more discussion of the follow-

We first consider those constraints associated witind Points. We introduce the quantitiéé,, which is de-

Lagrange multipliers\y. The solutions to these equations
will help to simplify the other constraints. To break the to-
pological gauge symmetry of tH&F theory, and in the pro-

fined as

NAA’:tIMe,u,AA’ ’ (35)

cess introduce the local degrees of freedom, additional coRgneret~ is the timelike unit normal satisfying“t,= — 1
" .

straints have been introduced in EQ7). Their canonical
form can be read off of Eq30), yielding

1 , i
J?\B==|—2 €%} ecgn —19°mag=0, (31)

1
a A . a
JA’B/:=|_26abcebA/eCB/A+Igzﬂ-A/B/:O'

(32
1 )
Ji::l—eabCeg\AXcA, —ig?m3=0, (33
1
3, :=|—eab°eg\A, Yentig?my, =0. (34)

These equations set thé”'B", 7248 72A and 72~ to be the

’ . ! .
Then we can expres=,” , in terms ofN§ and eitherm?AB

’ ’
or m2AB

AA" bBC__cApA’
€y = —=€apcm  mc Np (36)

'’ _cA'\ A
el A= —e B C mér Ng (37

* o
whereh is the determinant of the spatial metfig,, .
Notice that there is a secondary constraint, which is
1 et oA A
ﬁeabcwbs ¢ WE, Ng -
(38)

AA' 1

a \/E €abc™

bBC__CANA'
mc Ng

This expresses the reality conditions. We will later use a
consequence of this, which expresses the idea that the areas

duals of the two forms constructed by the frame fields andf surfaces defined from the left handed fields are equal to

the spinor fields.

the areas defined from the right handed figl2lls

We first discuss the solution to the bosonic constraints We now come to the treatment of the fermion variables.
(31) and(32). These are the same as in general relativity andrhere is a difficulty which arises from Eg&33) and (34).
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These tell us that the Poisson antibracKets, xa:} are non- aa L b aa oA a
zero. Hence the configuration space cannot contain both fer- Yada=7 €Y ehaxcar —19 Y ma=0, (44)
mionic fieldsy, and x5, and we cannot construct a quantum
theory in terms of simultaneous eigenstates/gfand ya: . , 1 , ,
This is a well-known problem in fermionic theories; there are Xa Ja =T €A el eatig?xh o, =0.
two ways of handling it. (45)
C. Treatment of the fermionic constraints: Method 1 By adding and subtracting we get an equivalent set of con-
We break left-right symmetry immediately and choose,Stralnts
arbitrarily, to diagonalize one of the fermion fields, say, _ A _a A _a _
while treating the othery,., as a momentum field. This R=ama=Xa 7 =0, (46)
means that we will choose a representation such that A
V= by A € ¥ca=0. 47
YAT)=yAL), (39 o,
Eliminating e,,, we have
in which the action ofy, will be
"\1B
S= x4 Ny mhem “Aypa=0. (48)
o , 6
A AA
M=e™ —|I'). 40
X | ) 5¢A| ) (40 E. Elimination of the lagrange multipliers

. . . We will want to eliminate thex g and A a:g, from the
Here for convenience we would like to choose the conjugatg,qnical theory. This can be done by solving the constraints
pairs (AL°,mag), (AL ,7h.g), and @4, mh) for the  that follow from the vanishing of the canonical momenta for
phase space, and the Poisson brackets are Bag.Ba/g’,Ba,Ba . These are

{ a (X),A CD(y)} 638(AC D) (X’y) I DB"—_Z 2|
1) b € bcAB 2 bA%cB

(41) 1 GVA .
+; ol e Ynpec—1€°9°mag— € Npcas=0,
{m 00, oY)} = — 55 585°(x.y), 9
with the rest being zero. We need to solve for the other
; AA" _aAl A : 1 1 1 G\/K
variablese;” ,7°" x5 in terms of the canonical momenta |a = €0, p+—— €A% e at =
from Eqgs.(36)—(43). To do this we solve the remaining pri- ~° g2 g2l? bA g? 2l
mary constraint$33) and(34) to find, )
X GabCXA/bXBrc+ |e2927TZ,B, - eabc)\bcArBr - 0,
11
A _ aAB_bn A’ (50
Xec = T_Eabc'rr maANg (42)
hl
a abc 1abc A'_ 2.2 2 _a
i |A‘:?€ fbcA_ae Cpan X T1€°Q U Ty
T = —5 €% . (43) i
gl —1€3PN\y 2=0, (51)
Proceeding from here we quickly reach the form of ca- 1
nonical supergravity discussed already by Jacobsgfifih 15 ::E € a0 — aeabcebA,Azp’ij ie?g?ulmy,
D. Treatment of the fermionic constraints: Method 2 — 1€\ .o =0. (52

The second method is to keep left-right symmetry at th .
cost of keeping in the theory both sets of fermionic variablese,These are second class constraints and can be solved to

along with the constraints that imply their redundancy. ThisSMNa€Abcag, Aocarer s Mpca, aNdApen in terms of the
will be convenient for the study of the boundary theory asother variables:
well as the quantization. 1 1 GVA

To do this we find the secondary constraints which are €PN p pp=— €30%F | gt Tigt — LA
analogous to Eq(38) which impose the relations between CABT 42 CAB AB 92 2l ATcB
the left and right fermionic variables. Taking linear combi- ) 5 a

nations of Eqs(33) and (34) we find that —ie“g mag, (53
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. a__ a B
vy L b o La:=Dama—GVA 7R, (62
bcA’B! 5 € becA’B' — 1 Targy
i Ry = o enbef) +—GJX e (63
1 G\/— Al - 92| € 3| 7T AAA
2 2| XA'bXB/ +Ie g WA’B”
g andR,, seems not to be conjugate bf, . However, using
(54 Eqgs.(36)—(43) and(18), we can change the form &, and
find
1
|fabc)\bcA:_zfabcfbcA_iWA_'eZQZMZ’”A’ (55 I GVA
g RA: 2| abCf + _7T eaArA
| €00 o = 0%y i 2 +ie?g?u’my, . (56)
g P g =Damit —5— mhetk
F. Gauss and supersymmetry constraints 2G\A
=La— TWAB'ﬂav

Now we come to the constraints that impose the

Osp(1]|2).®O0sp(1]2)g local gauge symmetry. These are _ ,
L R La=Dama,+GVA TS, o y2

1
Gap=Damagt T matap=0, (57) i
! = afabcfﬁc"f‘e\/xﬂaA eaAAr
1 )
Gk::DaW2+G\/K7TiBlﬂS+ I_ﬂ_aA €aA’A ZG\/K
- RAr + 3| WaAeaAAr . (64)
—i eabc)\A,abecA’A
5 To show this, we only need consider the key term and find it
=D,matG \/Xﬁislﬂa can be changed into the following expression:
i . GVA —i y
abcgA aA _— ! ! rnt
+ ae be+ 3' ™ eaA’A_O! (58) aeabcfﬁceaA’A:aeabc[de? +A€ B XcBr]eaA/A
N -2 1 a i €ab
GA’B’::Da"TA’B’—i_TWA'XaB’:Ov (59) :g | c[db)(c eaA/A]
R =~ _a a B’ 1 aA i abc A’ B’
GA,:ZDaﬂA,‘f‘G\/KWA,B,Xa +|_7T eaAAr +a€ Xc (dbeaAIA+AbA,eaBIA)
+i€2PNA pecan = Do, + GVA T2, X —ij i
o oA S :Dbﬂg_AEA’”’tB’"‘ _GabCXé Dp€ana
i GVA g
+ afabcf +_7T eaAAIZO, (60) i
=Dpma— Apamp+ — €*%xp
where Eqgs(55), (56) are used to cancel the multiplie@b gl
and)\g\l; out of Egs.(58) and(60). HereG,g andG, g are B GVA
nothing but the ordinanBU(2), @ SU(2)r Gauss law con- X| —Apaaa™ o] XbA! Pan
straints, ancKB,k,Gi, are the left-handed and right-handed _
supersymmetry constraints respectively, which are different b !

_ A abc A’
from those ofchiral supergravity due to the appearance of =Doma 5 € Xe Xoa Yan
eaa’ » Which mix the left-handed supersymmetry constraints
(L) and right-handed onesRg) in chiral supergravities =Dyma. (65)
together in the form o ) )
Combining these equations together we find

Gi=La+Ra, Gh=La+Ra, (61)
where 3This is the characteristic of chiral supergravity; $&&].
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GVA A NA,
Ga=2 DawA+TJ—wf\B E) =0, (66) GAN _z CABN—B +CA'® —B) : (74
G vh vh
Gk, :2( I_eabCfg\c 26‘/— ) eann =0. To find the forms ofC*® andC*'®" we need only to plug all
gl the solutiong36)—(43) and(53)—(56) into (73); then we find

(67)  CABandCA'®’ to have the following form:

They are conjugate of each other indeed. We may also

: ; G%A
note that if we write CAB— 3 €5 ACTOBO 3 —2I7TaBC7Tng E
or, " g (68) GJ—
A’ \/ﬁ A —j WaBCW%ClﬂawbD
we have
+G\/—g € 7T{:\A bBC C 2|7TaBC bf ,
i ZG\/_ abc ab
R_ B b DA
Ga=2 afbc 3 —— 7Beqpc | TR (69 (75)
If we consider the Poisson brackets betweenGhg and AR/ G?A aA'C’ bB'D’
G5, we find that they does form a close algebra for T3 €anc” Terp:
Osp(1]2) as in the case of chiral supergravity:
+2i 2B’ C,WD,C,fA b’
{G(N),GIN)}=G(INA]), (70) i
G A e’ b ! ’
{GH(1),G(M}=G ([ 7.\ ]), (7D) i T oxa X
{GY().G (7"} =G([7.7']), (72) GVA -
+—g €apcT 7TbBC’7T
abc c’

whereG and G are the constrained functional smeared on
the three dimensional space. The same is true for the combi- - aprc N
nation of theG /g, andG,: . So all these equations form the +2im 7o fab- (76)
super Gauss's law which generates th@sp(1|2), ) ) o

®0sp(1|2)r gauge transformations of the canonical vari- AS is the case in general relativitg], it turns out that the

ables. four constraintsC*® contain both the diffeomorphism and

In this sense we can say our model is Comb|n|ng tonamlltonlan constraints of the SupergraVIty If we Only con-
copies of the chiral supergravities into one. sider the terms only involving the variablegg andF g

We sitill have to discuss the commutator® with GA” then the constraints go back to those of the quantum general

This requires more work as it involves the Hamiltonian andrefativity [2].
diffeomorphism constraints.
IV. BOUNDARY THEORY

G. Hamiltonian and diffeomorphism constraints We are now ready to focus on the construction of the

We come finally to the constraint associated with the La-boundary theory. We follow the formulation given|[ig] for
grangian multiplieregaas . As in [2] these will contain the general relativity with Lorentzian signature. This is related to
Hamiltonian and diffeomorphism constraints. We have the Euclidean formulation given ifl], but differs from that

in several significant aspects.

GAA. EWaABeA’ 1 1 aan 2i abey ABGA” We study first the addition of a boundary to the action and
2 a8 |2 Xa — |2 ab=cB equations of motion. Once this is understood we will proceed
to their expression in the Hamiltonian formulation.
_ : abc)\ 2 ,n_aA’B’eA _i 7_raA’ ¢A ) ) ) _
I abXC |2 aB’ |2 a A. Boundary terms in the action and equations of motion

In the presence of the boundary, the ordinary variations of
the action are not well defined unless boundary terms are
added to the action and some boundary conditions are im-
posed. These must be chosen so as to cancel the boundary
To understand this constraint better, we try to change it intderm in the variation of the action, so that the total action is
a new form in whichG,, is divided into two conjugate functionally differentiable. We will assume thatl has the
parts Cag,Carg’): topology ofRX 3, so thath M ~RX d3,, whereds, is a com-

2i
+|—26abcﬂb o7 LA hog (73
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pact two manifold. We will assume here th&f ~S?, but it
is not difficult to consider the more general case.

It's very interesting that the total actiof0) can be
supplemented by th®sp(1|2), @ Osp(1|2)g super Chern-
Simons term with the appropriate boundary condition

ik k
Scs=ELMch(AABM/fA)_ ELMch(AA'B' XA

ik GVA ~
=— AAB/\FAB+ A/\A/\A+ J—M/\FA
4 IM 21
Ik AANBAF 2A'/\A'/\A'
a7 ) o aB T3
GJVA .,
+TXA/\FA/), (77)

where Eag,Fa) and Fag ,Fa) are components of the
curvature of the one-form connection @sp(1]2), and
Osp(1]|2)g respectively. They are of the form

GVA
2| wA/\va

Fap=fapt——
Fa=Dyna="fa,
(78

GVA

fArBr+ 2| A’/\XB’ y

FA!BI

’IEAIZSXAr:fA/ .

If we take the variation of the total action

0Si0t= 6Sgrt+ 0Scs
:f(...)+f SAABA B L;’E
" Y g ABT 5 "AB
1 k GVA
+8yAN\| — gz Ba= o (FA"‘AAB/\lﬂB))
_J 5AAB/\ B TR T kii R’
Y g A'B T 5 FAB
, (1 k GJVA -
A
+5X /\(?BA/_ZTF 2 FA/+AA/B//\X ))

(79

we require that the boundary terms vanish. In order to induc
a local boundary theory, we require that the integrand of th%
boundary term in the variation vanish. This leads to the fol-

lowing conditions:

k -

1
6abc5A§B ?BabAB_ EFabAB> =0,

(80)

PHYSICAL REVIEW D 63 064010

N k GVA -
Syl = 7 Baba— 77 2 ——(Fapat+Aaas\¢p) | =0,
(81)
abcopA'B’ 1 K -
€70A: | 5 Babas — 5 Fabas | =0, (82
(1 k GVA -
Eabc5)(2 (?BabA' P ——(Fapa +Aans/\xp )) =0.

(83

There are several ways to satisfy these conditions. Taking the
boundary term involvingsA,g as an example, we find the
following:

(i) One can fix the variablel, on the boundary:

SALE|, ,=0. (84)

(ii) One can take the self-dual conditions for the curvature

Fabas!

2

( FabAB_ﬁ

=0.
IM

BabAB) (85

(iii) We can consider some combination of these two con-
ditions in which Eq.(84) is imposed on some components of
the connection while Eq85) is imposed on the others.

The first case is simple, but leads to a reduction of the
local gauge invariance on the boundary. The next simplest
case would be the secofi@b). This is what was done for the
Euclidean theory if1]. An advantage of this condition is
that it leads to no reduction of the local gauge symmetry on
the boundary. However, in the Lorentzian case, 89) is
too strong, as it can be shown that all of its solutions corre-
spond to a surface wiggling in a fixed AdS space-time. By
counting there is one degree of freedom, but this turns out to
correspond to local longitudinal motions of the surface.

This problem does not arise in the Euclidean case studied
in [1] because the left and right handed components of the
connection are independent. It is a consequence of the fact
that in the Lorentzian theory they are instead related by the
reality conditions, which require that they are complex con-
jugates of each other.

If our boundary conditions are to allow an infinite dimen-
sional space of solutions we must then loosen the self-dual
boundary conditions. We do this as follows.

We begin by imposing a time slicing of the boundary,
which corresponds to some choice of time coordirtate
%M. We then restrict attention to a spatial slice of the
oundary at fixed=const. We proceed by specifying a set
“of preferred points on the spatial boundary, which will be
called punctures. They will correspond to points where the
spin network states meet the boundary in the quantum
theory. Each puncture is surrounded by a region of the spa-
tial boundary. In each region we introduce local coordinates

064010-10
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(r, ) which are angular coordinates with the puncture at thé¢ake into account is that the boundary terms alter the defini-
origin. These can then be joined, yielding a single coordinatéion of the momenta of the fields, due to the fact that &)
patch on the whole punctured sphere, which reduces to atontains time derivatives,

angular coordinate system in the neighborhood of each punc-

ture. Bringing backt we then have a coordinate system X i ) ik 5 b A AB

(r,6,t) on the whole ofdM minus the world lines of the  Tas="5 € Bocas(X) + 4 | d°S(0)e™Ay 83(x,S(s)),
punctures. 9

Then we put the following conditions for the components (99
of the fields
1 k - WZ’B’::_zeachbcA’B’(X)
EBH‘)AB_ EFrﬁAB: 0, (86)
_|k rnt
- f d?S(0) €?PAL B 6%(x,S(s)), (96)
1 k -
?BﬂtAB_ EF oag=0, 87 _
—i
Tar=—s € Bpea(X)
6A,=0. (88 g
The first two equation&86) and(87) correspond to imposing +—J d?S(o) e?P \/—,pg\(s\?(x S(s)), (97

the self-dual boundary conditions on the componénisand
Fi¢. But instead of constraining the,; component we im-
pose the third conditiori88). The radial component of the i
connection, A, , is thus unrestricted and is free to evolve ‘—zfa Boear(X)
with time. 9
It can be checked that when these conditions have been —ik [ bG\/X K
imposed the bulk theory is not trivial and has an infinite +Ej d“S(o) € S Xb 8%(x,S(s)), (98
number of solutions.

We can then write the boundary conditions in terms of the .
component fields, yielding wheree?” is the area element induced by the volume element

on the surface with

127 A’ G\/K ab,_ _abc
froas= 2 gzkerAA’/\eoB o Vi Nbog, (89 €=M (99
1 The Gaussian constraints can be expressed as
a
f —ean/N\X5 (90
roA= I g k rAA X(9 GABzDapaAB—f—qAB' (100)
12« ) G\/K where
frons= 2 ngetAA' Crs T¢tAA¢9B ,
91 =i ik
OV pene. — € BC(X) +5— f d28(0) eAGE6%(x,S(9)),
g
1 27T ’
ftaA:_TetAA’/\Xg , (92) (103
and
0Agas=0, ¢pp=0. (93

i
Consistency with the field equations leads to a relationship ~ g*®:=—- = AN
between the constaktand the cosmological constant, gl

Yaup 8%(x,8(s)).
(102

ik GVA
6 +—f d?S(o)e® VA
GZAZT. (94) 2 2|

B. Boundary terms in the canonical theory The Gauss functional can be obtained by smearing the con-

Next we describe the expression of the boundary termstraint on the spatial manifold with the appropriate boundary
and conditions on the canonical theory. The first effect taterms:
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—i —i ik
G(AAB):LAABGAB: LAAB Da ?EachﬁéB) gl P BYe |~ f AABI d’S(0) €2°D AR 5%(x, S(s))

+EJ2AABJ d?S(co)e?® 50 ‘V:‘/’Eﬁs(X,S(S)):—Jigeaché‘EDaAAB JAABgl 20BA, 4B

- ik ik G
J dSAAB(g_eachbcn at 5~ Pt + e \/— abwlﬁb) (103

In the canonical theory the constraint then has a boundary term

G(Aap) |b_j dsAagl —

—i ik G
g | abCBbc Ne +5- 2a ab( fAB \/_'r/’a'r/fb” (104)

This leads to the canonical form of the boundary terms:

1 Kk -
? Babae= ZFabAB- (1095

Notice that this corresponds with one of the components of the boundary terms we imposed in the Lagrangi@a8&heory
The boundary conditioné87) do not arise in the same way, as they involve the time components of fields, which become
Lagrange multipliers in the canonical theory. The last components of the Lagrangian (88opersist in the Hamiltonian
theory. These in fact correspond to the fact that in the quantum theory the labels of the punctures are fixed and do not evolve
in time.

In a similar way, the boundary term on the supersymmetric constraints can be derived as follows:

G"=D.p*+q* (106
where
—i ik GVA
pPAi=— € BY(X) +5— f d?S( o) €3® \/—¢Qé\3(x,8(s)), (107)
i 2GVA GVA
=g ab°BAE¢cB+—J d?S(0) = AL oad (X, S(9)), (108

and the supersymmetric functional is

=i —i 2GJA ik G\/—
G(An)= LAAG’E LAA D4 geams’éc)—gzl 3 < Babves| 5 o | Aa f d28(0) €¥°D 44y 6°(x,S(5))
ik GVA =i —i 2GVA
2 b AB _ | ' abcpA . 0 b AB
+ ZJEAAJ d S(U')ea ol Ab (//aBﬁg(X,S(S))— fz 92 e CBbcDaAA J'EAAgzl 3l e2bep B en
—i ik G\/—
_ _abcpA _ ab AB
+deSAA( 7 € BpcNa= 5 (fapt AR 'r’be)) (109
Comparing Eq(109 with Eq. (81), we have
1 k G\/—
—Bapa=5 - —— (Fapat Aaas/\ ). (110

From above consideration, we find both the Gauss constraint and the supersymmetric constraint well defined on the spatial
surface if we impose the self-dual conditions for the curvatures.
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V. QUANTIZATION OF THE THEORY and bounded by the gened¢ Theg-deformed formalism of
the supergroup give some modification to the spectrum of the
We are finally ready to discuss the quantization of superarea but having a similar expression as the ordinary one:
gravity, in the presence of boundary conditiof®®)—(88).

We follow the methods of loop quantum gravfi§—10|, ex- AITSG . _ 2 friql } Sg .
tended to theories with finite boundaries[ih2]. Two im- AlT5n; ve) Z oy Lt 2 790 ve),
portant parts of the theory are the spin network b§&jg], (112

which we extended to supergravity [8], and the Chern-
Simons stat§19,21], which was extended to supergravity in Where
[13]. The combination yields framed or quantum-deformed

supersymmetric spin networks, which are constructed from [j]::qj—qu (113
the representation theory of quantum deforn@dp(1|2) q-q 1
[27].

The method of treating the relationship between the If we impose all the constraints on the state space quan-
boundary and bulk theory we use was developeflliland  tum mechanically and require the results of their action van-
then extended to theories with Lorentzian signatur¢2p  ish, we could find a set of physical states which actually is
Here we describe only the results; the reader is referrgtfjto the super Chern-Simons states:
and[2] for detail. "

There is a well-known non-perturbative procedure to dea _ - _
with the quantization of the bulk theory in the case of genera:\P(F) j DAex;{ 47T[Y°S(AAB’¢/A) Yesl Aweroxan) ]
relativity [6—10]. A set of complete but independent basis of (114
the quantum states can be constructed by means of spin net-

works. It is a trivalent grapl’ in which each node join some mechanical sense. We consider the spatighunctured

links. Associated every link, there is a spinwhich satisfies boundary with finite area. Associated to every puncture
some conditions at the node, which is also labeled by ahore is a half-integef, which takes values from 1/2 /2, ’
intertwinerve . Recently we extended these techniques 1o thg,narei is the couplinéy constant of the Chern-Simons theory.
N=1 chiral supergravity with super Lie algeb@sp(1|2)  Then the total Hilbert space is constructed by the direct sum
[3]. It turns out that an analogous supersymmetric spin netat the state spaces of aDsp(1|2)®Osp(12) Chern-
works can be established for the theory. In particular in thesimons theories. Here we pay more attention to the contri-
basis of super spin networks the spectrum of the area opergution of the boundaries. As we know, for every set of the
tor can be computed out and partly diagonalized. For tripunctures the Hilbert space of the topological field theory
valent spin networks its eigenvalues have a discrete formas finite number of degrees of freedom. In our case it is
given by[3] contributed by the conformal blocks for thepunctures of
the Osp(1]2)®Osp(1|2) WZW model. We find

It allows us to testify the Bekenstein bound in a quantum

1 P o=V i@V iy (1195
AT vy = 2/ §il §i+ 517590, ,ve),
| Vel Z p Vi i 2| V) and the dimensions of the space is

(111

dimv, ;e =1l ¢ii+1. 19

IETREED in IETREED

wherel , is the Planck length ang=n;/2. We need modify
the construction slightly to fit the constrained sup&F Then, based on this result and the holography hypothesis,
theory, which double covers over the chiral supergravitywe can construct the total physical state space as the sum-
The configuration space of the theory is the modular space ghation of all the possible states of the topological field theo-
Osp(1]2)®@0Osp(1]|2). The basis for the Hilbert space can ries:
be constructed in terms of the super spin networks for the
super algebreOsp(1|2) @ Osp(1]|2)g. Then the links of hvs.
the networks are labeled by conjugate pairs of spjpsjR) HPM=D2L 2 My (117
and the nodes are labeled by pairs of intertwiners, ¢r).
There is a similar case as in quantum general relativity thatsing Eqs.(111) and(116), and choosing the constarjtwe
we need impose the balanced conditions to the pairs dind that the Bekenstein bound is satisfied:
(jL,ir) and (v_,vR) to coincide with the reality condition of
the theory. These conditions afge=jr and v = vy.

All the construction above can be extended without diffi- 4the quantum superalgebra and supergrougéosp(1/2)) are
culty to the quantum deformed version of the superalgebranvestigated in several placg27] and its structure of finite dimen-
U4(Osp(1]2)), whose representation are finite dimensionalsional representation is well established.

=}
=
>
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Gh and BPS black holes in the language of loop quantum grav-
(118 ity. This should make possible the direct comparison of the
results on black hole state counting coming from string
V1. CONCLUSIONS theory and loop quantum grayi'_ty. Another application of
these results may be to an explicit construction of the bound-
In this paper we have extended to the casdNefl su- ary conformal field theory in the AdS/CFT conjecture in 3
pergravity the basic facts about finite area boundary condi+ 1 dimensions.
tions worked out previously for quantum general relativity in  As a final remark we emphasize the natural way in which
[1,2]. Here we have treated the case of timelike boundarieghe Bekenstein bound is satisfied in quantum general relativ-
fO||0Wing [2], it is StraighthI’Wal’d also to find the same re- |ty given On'y the imposition of the appropriate Chern-
sults for the Euclidean theory with cosmological constant bysimons boundary conditior{d]. We see here that this ex-
restricting to the |eft handed sector and then EUCIideaniZing,ends natura”y to Supergravity' Th|s appears to make

as in[1]. A natural extension of the Chern-Simons boundarypossible formulations of the holographic principle at the
conditions studied 1] to null boundaries, suitable for the packground independent levig2—35.
descriptions of horizons, has been worked ouf28], fol-
lowing observations made if30]. Following the results
given here it should be straightforward also to extend these
results to supergravity. Another important thing yet to be
done is the construction of quasi-local operators on the We are grateful to Abhay Asthtekar, Roger Penrose,
boundary which represent the Hamiltonian and supersymmeMichael Reisenberger and Carlo Rovelli for comments on
try charges. It may be hoped that this may resolve issuegarious aspects of this work. Also both of us would like to
concerning the positivity of the Hamiltonian in loop quantumthank the theoretical physics group at Imperial College for
gravity [31]. their hospitality during this last year. This work is supported
The next works in this series will extend these results tdby the NSF through grant PHY95-14240 and a gift from the
N =2 supergravity, which should make possible the detailedesse Phillips Foundation.

CALj1, .- dnl description of Bogonol'nyi-Prasad-Sommerfi¢RPS states
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